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Precision medicine as a control problem

Traditional precision medicine Proposed vision
Classify then treat Dynamic, feedback control
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= Viewed as a classification task = Viewed as an optimal control task
= Therapies are static and non- = Therapies are dynamic and
adaptive adaptive

— Dependent upon patient trajectory
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The need for simulation

= Many control approaches use existing data to retrospectively learn control policies
= Simulation enables virtual experimentation: going beyond what has been tried

= Recent advances in optimal control have enabled learning controllers for complex, high-
dimensional simulations

Learning controllers using...

_ Clinical Data - |¢ Biological Simulation

Able to explore new
interventions and/or
combinations

Scope Limited to what's already
of interventions been tried

Interpretability Limited by statistical power Limited only by
of interventions of existing data computation

Dimensionality Low-dimensional, discrete ~ High-dimensional,
of interventions (e.g. 1 —2drugs, 3 doses) continuous
Dynamics : . , .
Typically static Dynamic, adaptive
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Sepsis agent-based simulation — Demo

Damage & Infection
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Reinforcement learning (RL)

Given an
observation
choose the

action

expected to maximize
the cumulative

reward

RL agent

learns by inter-
acting with the

environment

observation
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observation

Problem Formulation: Observation Space sl

reward

Observation Space

_ small, aggregate

Cytokine level + cell counts Aggregate cytokine levels +

at each grid point cell counts (non-spatial)
101 Size: [R101><101><21><N Size: [R21XN

Clinically unrealistic with Clinically plausible from

today’s technology blood tests
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observation

Problem Formulation: Action Space action
reward
|GCSF: O.O|
= Action Space
IL1: 0.9 i
0 _us small, discrete
IL8: -0.5 Differentially control all Augment or inhibit by a
I B cytokines at once fixed amount;
| IL10: .2.3| One cytokine at a time
J— 14 SR
L12: 01 Size: [-1, 1] Size: 29
| ¥ Clinically plausible with Clinically plausible
TNF: -0.2 multi-channel infusion pump
[ I |
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observation

Problem Formulation: Reward Signal action

reward

= The simulation naturally provides only sparse, binary rewards:
life/death
Toutcome = A4 [heal] — A_[die]

= To aid learning, we added two terms to the reward signal

1. Potential-based reward shaping term

. Helps guide the RL agent toward “good” states without altering the optimal
i
PONCY T = Ag (damage(s) — damage(s’))

2. A penalty for taking actions
. Regularizer; promotes conservative actions

T2 = —Adllally

= Final reward signal: 7(s,a,s") = Toutcome + g + 7
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Unique challenges of the sepsis environment

Failed to solve using human experience, o 40 25 26 2 46 48 :
. . . momee o0 oo
genetic algorithms, and classify = control eeee o eee
approaches
&2 M R m

T CREDIT @@

— " Atari 2600 m

High-dimensional state v
High-dimensional actions v v
Sparse rewards sometimes v
Long time horizons v
Computationally expensive v
Unsolvable by humans v
Stochastic None None High
Each episode has different dynamics v
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Training the DRL agent

= Environment is “solved” by 2,500 episodes
= Distinct “phases” of learning

22000 W —

-4000 B
-6000 .
—-8000 8

Return

1.0 , l
0.8 |-
0.6 -
0.4

0.0 ' '

1000 T T

Outcome

800 |-
600

400 |

Episode length

200 1 | | 1
0 500 1000 1500 2000 2500

Episode

- . "‘I
Lawrence Livermore National Laboratory N A'S’z%\ 10
LLNL-PRES-751582 National Nuclear Security Administration




Evaluating the learned policy

Count u

Performance

Mortality rate under learned policy
— Trained patient: 46% 2 0%
— Across 500 patients: 49% = 0.8%

= Clinical insight

IL-1 (pro-inflammatory) is unregulated
early and suppressed late
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— Suppression comes later for patients
with larger initial infections
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Next steps: Improving clinical plausibility

= Tradeoff between controllability and clinical relevance

Aspect Next step
Clinically implausible Clinically plausible
Observability Remove infection and
damage from state
Observation Add 3 hr observation
delay delay
Observation Decrease to
frequency observation every 6 hr
Action set Identlfy' existing
mediators
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Long-term vision: Closed-loop control system

— . —

Infusion pump

Patient Sensor/

/\ assay Controller
\/ Real-time Aptamer
biosensor
Multi- GCSF: 0.0 IL10: 0.3
h | N [ M
Cchanne IL1: 0.9 IL12: 0.1 “...used to modulate the drug
infusion - M) infusion rate to maintain in vivo
> ® ) IL8: -0.5 TNF: -0.2 drug levels at a target value.”
pump [~ o - — - Nat Biomed Eng 1:72 (2017)
~ DRL-informed
' control policy
https://openclipart.org/
https://www.mediware.com/home-care/blog/new-legislation-help-home-infusion-patients/
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Thank you!

See Tom Desautel’s poster!
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